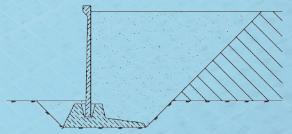
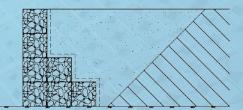

# ПОДПОРНЫЕ СТЕНЫ ИЗ МЕТАЛЛИЧЕСКИХ ГОФРИРОВАННЫХ КОНСТРУКЦИЙ (МГК)

# Виды подпорных стен



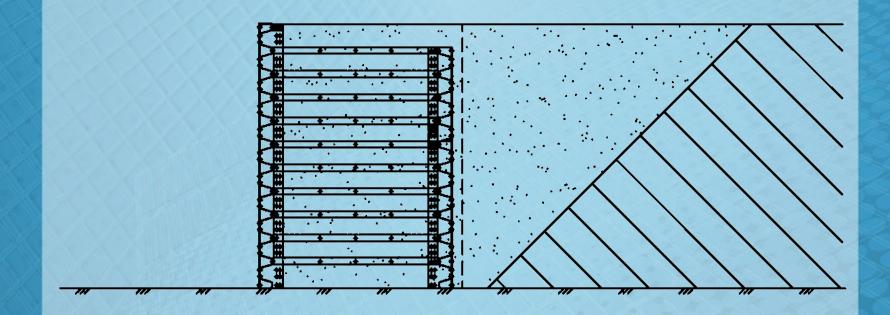

В настоящее время массово используются следующие конструкции подпорных стен:


• Подпорные стены из монолитного железобетона



• Подпорные стены из сборного железобетона

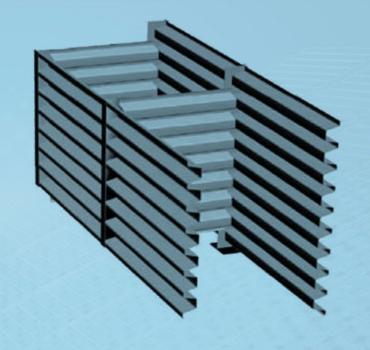


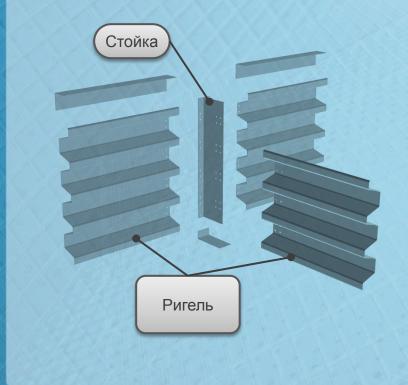

• Подпорные стены из габионных конструкции



# Виды подпорных стен




ЗАО Гофросталь предлагает к рассмотрению альтернативный вариант подпорной стены из стальных конструкций



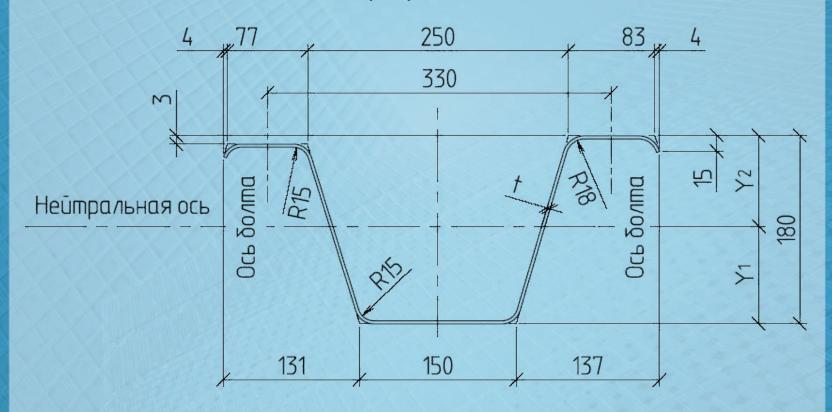

# Описание конструкции подпорной стены из МГК



Конструкция подпорной стены представляет собой коробчатую систему из связанных между собой секций.





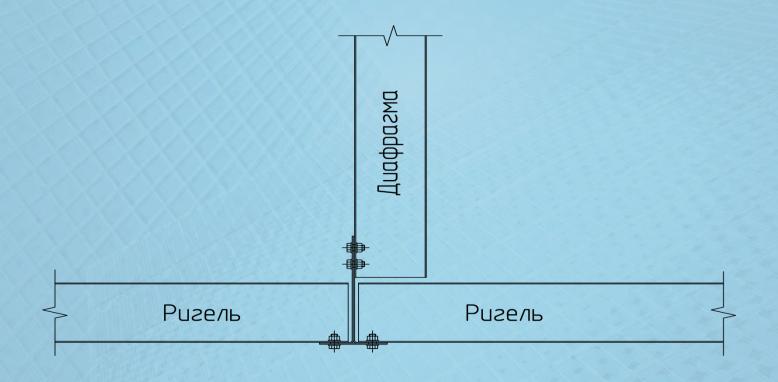

Секции подпорной стены образуются из стальных элементов – стоек и ригелей Элементы соединяются между собой на болтах.

Секции и застенное пространство засыпаются грунтом.

# Описание конструкции подпорной стены из МГК



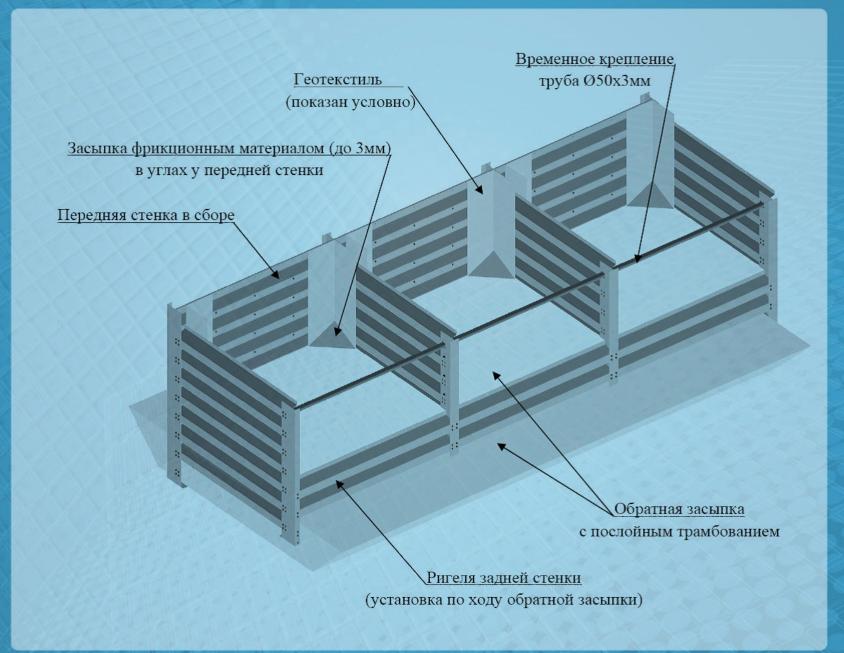
Ригели представляют собой трапецеидальный профиль




Основной защитой стальных изделий является цинковое покрытие из расплава в соответствии с ГОСТ 9.307 толщиной не менее 80 мкм

# Описание конструкции подпорной стены из МГК




# Схема сборки стойки подпорной стены



Примечание: Диафрагма – это ригель объединяющий переднюю и заднюю стенки подпорной стены

# Схема устройства подпорной стены из МГК





# Схема устройства подпорной стены из МГК



# Толщина ригелей подпорной стены

| Толщина ригеля, | Номер ригеля сверху вниз |               |
|-----------------|--------------------------|---------------|
| MM              | Передняя стенка          | Задняя стенка |
| 1,5             | 1 - 10                   | 1 - 7         |
| 2,0             | 11 - 15                  | 8 - 12        |
| 3,0             | 16 - 23                  | 13 - 21       |
| 3,5             | 24 и более               | 22 и более    |

# Толщина диафрагм подпорной стены

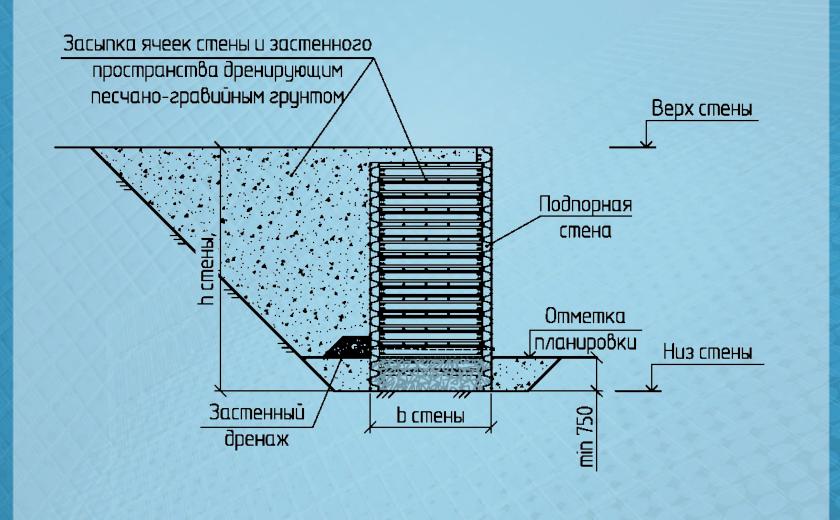
| Толщина диафрагмы, мм | Ширина стены, мм |
|-----------------------|------------------|
| 2,0                   | 2700 и менее     |
| 3,0                   | более 2700       |

# Материал засыпки ячеек подпорной стены из МГК



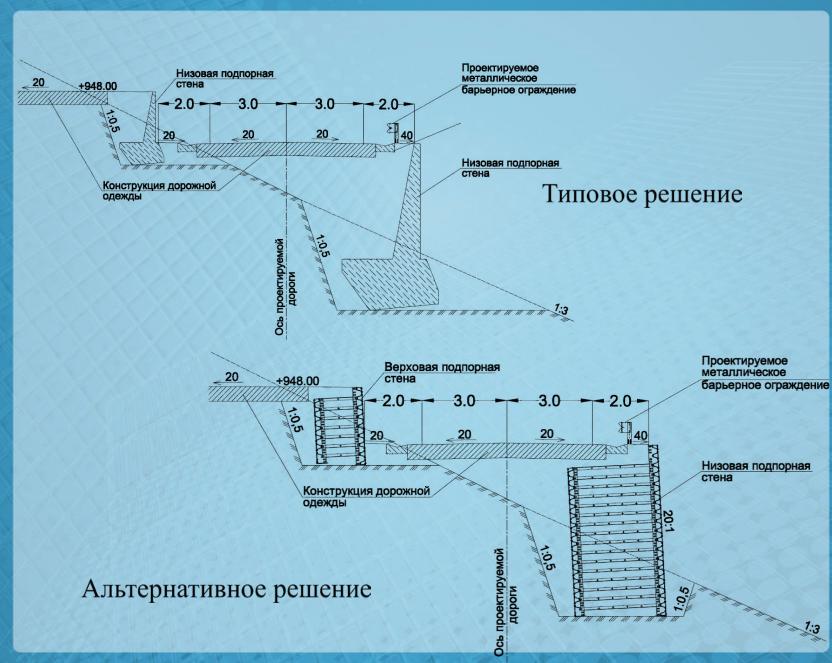
Дренирующий фракционированный материал, не агрессивный, поддающийся уплотнению обычными способами.

Оптимальные физико-механические характеристики:


- 1. Размер частиц материала не должен превышать 75 мм (на расстоянии до 300 мм от стен);
- 2. Количество частиц размером менее 0,075 мм должно быть не более 10%;
  - 3. Угол внутреннего трения не менее 27 градусов.

Уплотнение обратной засыпки, с коэффициентом 0,95, выполняется слоями толщиной не более 200 мм.

Этим требованиям в полной мере удовлетворяет песчаный грунт от средне- до крупнозернистого или песчано-гравийная смесь.


# Установка стенки в грунтовом массиве



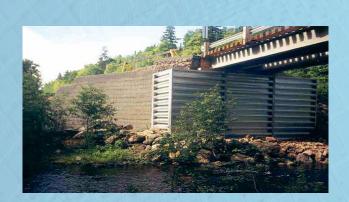


# Варианты проектных решений





# Варианты применения подпорных стен из МГК




• в транспортной отрасли - для удержания земполотна на участках автомобильных и железных дорог;





•для устройства устоев мостов;





# Варианты применения подпорных стен из МГК



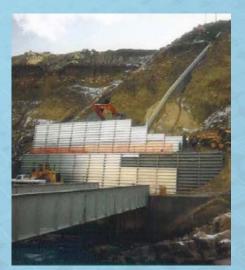
• в гражданском строительстве - при устройстве высоких насыпей и выемок, террасирование склонов, защита от эрозии, вертикальная планировка участков;







# Варианты применения подпорных стен из МГК




•в промышленном строительстве – для устройства площадок хранения сыпучих материалов, разгрузочных рамп, при планировке территории промышленных объектов;









# Преимущества подпорных стен из МГК



#### Широкая область применения

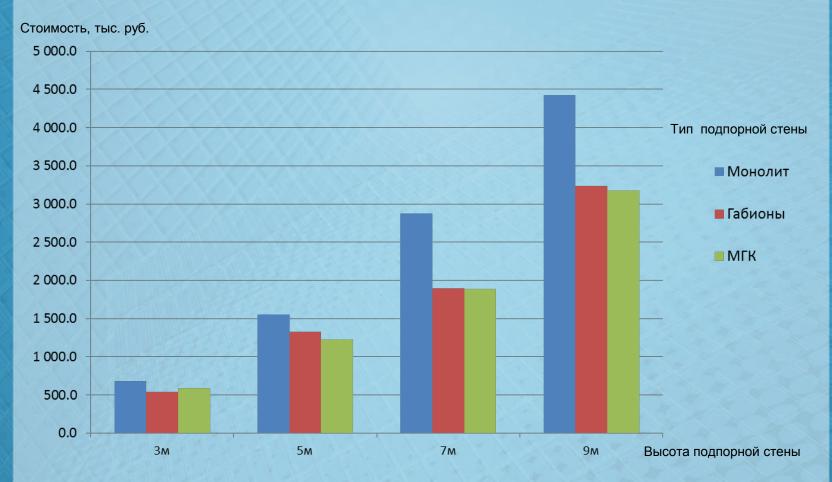
- Любые отраслевые направления
- Различные климатические условия
- Адаптивность под любые нагрузки
- Использование местных материалов для засыпки

#### Удобство эксплуатации

- Долговечность конструкции
- Отсутствие работ по содержанию
- Возможность демонтажа и переноса
- Возможность модификации сооружения

#### Эффективность строительства

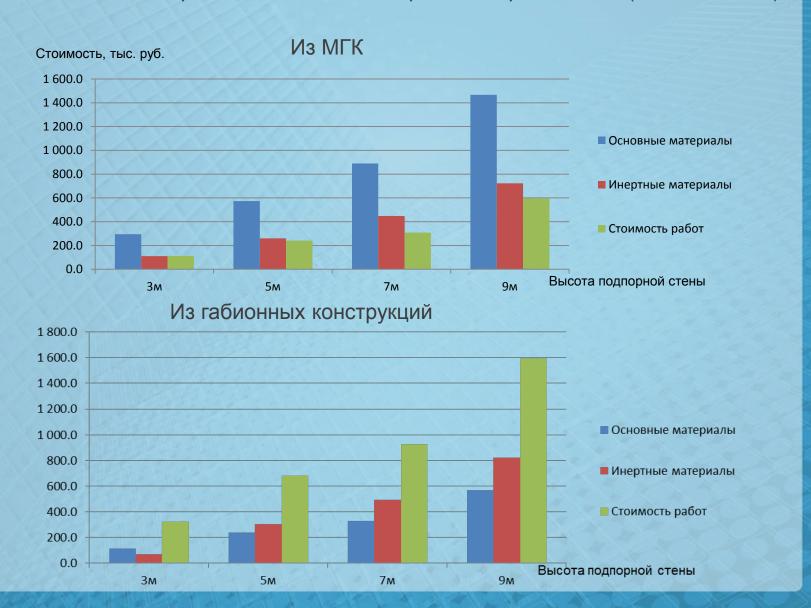
- Скорость возведения
- Низкая трудоемкость
- Отсутствие мокрых работ
- Не требует высокой квалификации кадров


#### Стоимость возведения

- Низкие затраты на монтажные работы
- Низкие затраты на доставку материалов
- Конкурентная цена на материал
- Отсутствие затрат на эксплуатацию

### Технико-экономические показатели

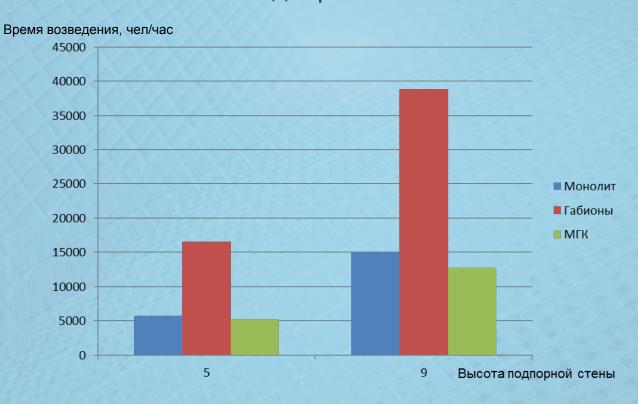



Стоимость возведения 100 метров подпорной стены (ФЭР, 2001 год)



#### **Технико-**экономические показатели




Состав цены при возведении 100 метров подпорной стены (ФЭР, 2001 год)



# Время возведения подпорных стен из МГК



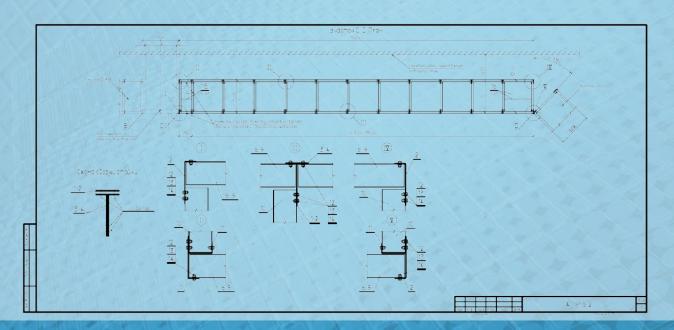
# Сравнение времени возведения различных типов подпорных стен



# Технология сборки подпорных стен






# Проектирование подпорных стен из МГК



Подпорные стены из металлических гофрированных конструкций являются разновидностью классических стен гравитационного типа, поэтому проектирование и расчет таких конструкций выполняются, как для обычных стен по нормам тех отраслей, в которых они будут применяться.

Специалистами ЗАО «Гофросталь» выполнены расчёты прочности и устойчивости стальных стен высотой до 9 м для различных грунтовых условий.

Нашим заказчикам мы оказываем полную и всестороннюю поддержку в разработке технических решений любой сложности применительно к металлическим гофрированным конструкциям.



# Масса подпорных стен из МГК



# Ориентировочная масса металла подпорных стен

| Высота стены, м | Масса металлоконструкций,<br>т/10 пог.м |
|-----------------|-----------------------------------------|
| 1,5             | 0,9 – 1.1                               |
| 2,0             | 1.4 – 1.6                               |
| 3,0             | 2,5 - 2,8                               |
| 4,0             | 3,8 – 4,3                               |
| 5,0             | 4,9 – 5,5                               |
| 6,0             | 6,5-7,6                                 |
| 7,0             | 8,9 – 10,5                              |
| 8,0             | 11,3 – 12,4                             |
| 9,0             | 14,7 – 15,5                             |

Табличные данные носят оценочный характер, в конкретном проекте подлежат уточнению. Меньшие значение относится к наклонным стенам, незначительным временным нагрузкам и грунтам засыпки с высокими физико-механическими характеристиками. Большее значения масс характерны для стен с тяжёлыми нагрузками и невысокими показателями грунтов засыпки.

# Испытание подпорных стен из МГК



До выпуска продукции в промышленном масштабе конструкция подверглась натурным испытаниям на воздействие тяжелых временных автомобильных и железнодорожных нагрузок. Испытания показали полное соответствие фактических и расчетных характеристик, что позволяет гарантировать прочность и устойчивость ее при различных нагрузках и грунтовых условиях.

Результаты испытаний, как в сухих так и обводнённых грунтах, под автомобильную нагрузку А14, Н14 и железнодорожную С14 подтвердили полное соответствие выбранной расчётной модели. Во всех случаях измеренные деформации и напряжения не превысили расчётных.





# Гарантия качества



Изготовление элементов подпорных стен выполняется по СТО 33027391-2013 «Изделия строительные металлические из гофрированных листов для конструкций инженерных сооружений. Общие технические условия».

Качество продукции подтверждается сертификатом соответствия.

Специально для проектных и строительных организаций разработан технологический регламент на монтаж и установку подпорных стен (ТР 01-09).







# Примеры реализованных объектов









#### Контактная информация



По всем вопросам вы можете обратиться в проектный отдел «ЗАО Гофросталь» по следующим контактам:

тел.:(8332) 711-790 ( время московское)

e-mail: lapin@gofrostal.ru, kb@gofrostal.ru

Ведущий специалист: Лапин Олег Александрович

www.gofrostal.ru

Приглашаем всех заинтересованных лиц к сотрудничеству в сфере проектирования и строительства металлических гофрированных конструкций любых размеров, радиусов и любой сложности. Снижаем стоимость возведения объекта за счет инженерных решений.

# БЛАГОДАРИМ ЗА ВНИМАНИЕ